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Abstract Expressions for the wave number dependent shear viscosity and longitudinal viscosity 
are obtained using generafired hydrodynamics and Mori formalism. The results obtained for 
shear viscosity and longitudinal viscosity have been used to calculate the wave number dependent 
bulk viscosity for the Lennard-Jones potential near its triple pint.  It has been found that the 
buk viscosity becomes neffatve for wave numben greater than 0.8 A-'. 

1. Introduction 

The crossover between the hydrodynamics over viscoelastic to free particle regime of the 
fluid can be studied either through the Boltzmann equation by including correlated collisions 
or by generalizing the hydrodynamics concept. The generalization of the conventional 
hydrodynamics involves the introduction of wave vector IC frequency w dependent transport 
coefficients, implying that the stress tensor and heat current are non-local functions of 
the gradient of the flow field and temperature. Thus, the generalized transport coefficients 
introduce a length and time scale into the hydrodynamics and are essentially useful in filling 
the gap between the hydrodynamics theory and theory applicable in the kinetic regime. The 
k dependent transport coefficients have been evaluated for the hard-sphere system [l] and 
very recently in the lattice gas system by Das and co-workers [Z] using the kinetic theory 
approach. One of the important developments of the work of Das et al, which we wish to 
address in this paper, is the existence of the so-called generalized negative bulk viscosity. In 
fact, the misinterpreted simulation results [3,4] for negative bulk viscosity in the lattice gas 
system are accounted for by them as the pure effect of generalized hydrodynamics. For the 
realistic interaction potential, there exist few studies in the literature for the wave number 
dependence of shear, longitudinal and bulk viscosities. The zero-frequency wave number 
dependence of shear viscosity, qs(k), has been studied for the Lennard-Jones (U) [5] and 
Rb 161 liquids by the computer simulation technique. The k dependence of longitudinal 
viscosity, q1(k), and shear viscosity of liquid Pb have been investigated by Larsson et al 
[7] through experimental study of the dynamical structure factor, S(k, w). and simulation 
study of the transverse current correlation function. The wave vector dependence of the 
bulk viscosity qB(k) was determined f" the relation qB(k) = ql(k) - 4qs(k)/3.  It was 
found by Larsson et al that the bulk viscosity becomes negative for values k > 1.2 A-' 
before it finally approaches zero for very large values of k ,  but at present there exists no 
explicit theoretical study for the calculation of the wave vector dependence of the three 
viscosities, especially of interest in view of the present development of the negative bulk 
viscosity. Therefore, in the present work, using the concept of generalizing the conventional 
hydrodynamics, we investigate the existence of negative bulk viscosity for a continuous 
interaction potential such as the LJ potential. 
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The layout of the paper will be as follows. In section 2 we derive expressions for the 
wave number dependent longitudinal and shear viscosity using Mori formalism. Results 
and discussions are given in section 3. In section 4 we present the conclusion. 

2. Expressions for wave vector dependent longitudinal and shear viscosity 

We introduce the wave vector and frequency dependent longitudinal viscosity 
through the following equation [SI: 

o) 

k2 kBT dt‘Jl(k, t’) - - dt’ O(k,  t - t’)A(k, t’) 
k2 s’ a -A@, t )  = 

at S ( k )  m nm 0 

where A(k, t )  is the longitudinal cment-current correlation function and S(k) is the static 
structure factor. n,  m,  T and k s  are the number density, mass, temperature and Boltzmann 
constant. A(k, t )  is related to the dynamical structure factor by 

S(k, W )  = (kZ/w2)4(k,  a). (2) 

A(k ,  o) is the Fourier-Laplace transform of A(k ,  t ) .  The dynamical structure factor is 
related to the density-density correlation function, F(k,  f), by 

S(k, 0) = (Z/B)F”(k, 0); f l =  (kBT)-’ (3) 

with F”(k, U )  as the imaginary part of the Fourier-Laplace transform of F(k ,  t ) .  
The long-wavelength l i t  Green-Kubo expression for the longitudinal viscosity is given 

(4) 

as 

~ ( 0 )  = $qs + V B  = (m2/2kBTV) w o k - 0  lim l m ( o 4 / k 4 ) S ( k ,  U).  

From the above equations one finds that Q”(k, o) could be regarded as the wave vector 
and frequency dependent longitudinal viscosity i.e. vl(k,w). We also find that in order to 
calculate @“(k, o) we need to calculate 4 ( k ,  o) or S(k, o). For the calculation of S(k, o) 
we use the Mori continued fraction representation [9] given by 

F(k,  0) = - B S ( k ) / b  + &(k7 ~ ) l  (54 

Mn(k, U )  -Si/[@ + &+i(k, U)] .  (56) 

In order to calculate S(k, o) and hence VI@, o) from the above expressions it is necessary to 
truncate the hierarachy of equation (5) at a suitable stage. Higher-order relaxation kernels 
M.(k, o) are mathematically complicated objects due to the restricted time evolution of 
the fluctuating forces appearing in their expressions. Therefore, one normally restricts the 
discussion to the second- or thud-stage relaxation kernel. Since the exact calculations 
of these relaxation kernels is not yet feasible, in general, simple approximations for the 
relaxation kernel can be made, which preserve a number of the important properties of 
the space-time autocorrelation functions, irrespective of the choice of the relaxation kernel. 
This approach has been extensively discussed by Boon and Yip [SI. Therefore, in the 
present work we reshict ourselves to M3(k. o) and assume it to be of the form 

M3(k9t )  = M3(k  o)Qi(t/ri(q)) =J$(k)Qi(t/q(q)) (6) 
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where Ql(x) is even and a decaying function of time. The value of r&) is such that the 
eighth sum rule of S ( q ,  o) is exactly reproduced. Taking the w + 0 limit and exploiting 
equations (lj(4) we obtain an expression for ql(k, o = 0) given by 

qdk, 0) = VI(@ = Cl(nm/k’)[S:(k)/S:(k)It;’(k) (7) 

where C1 = 1,” Q l ( x ) d r  and 5;’(k) = Si(k) .  The SA@) are called Mori coefficients and 
are related to the sum rules of the density autocorrelation function up to 2nth order. The 
explicit expressions for a few of them, which are used in the present work, are given by 
[lo1 

&k) = w:(k) - kzkBT/mS(k) 

a:(k) = [Ci(k) - (~;(k))~l/a:(k) 

(8) 

(9) 

(10) 

where qz(k), Ci(k) and Ci(k) are the second, fourth and sixth frequency sum rules of the 
longitudinal current-current comelation function, respectively. The expressions for fourth 
and sixth frequency sum rules are given by B a n d  and Pathak [ll]. 

Similarly, we introduce the wave vector and frequency dependent shear viscosity through 
the transverse current-current correlation function JI(k, r). In the Fourier-Laplace space we 
have 

&) = [CA&) - S;(k) - & k ) ( ( d ( k ) ) z  +~~(k)S: (k ) l /S~(k ,OS: (k )  

Jt(k, W )  E -Jc(k. O)/[O 4- kzEl(k, w) /~M].  (11) 

Recalling the Green-Kubo expression, i.e. 

(m/2k~T) lim lim(o/k)2JI(k, w) = VJmn 
ol- tOk-tO 

we find that in the long-wavelength and zero-frequency limit the k,(k, o), i.e. the memory 
function of the transverse current correlation function, becomes the ordinary viscosity. 
Therefore kl(k, w) is regarded as the k and h dependent shear viscosity i.e. Vs(k, o). We 
follow the Mori continued fraction representation, as described above, to evaluate f , ( k ,  o) 
from the above equations and approximate k&o) i.e. the higher-order memory function 
as 

K z ( k  t )  = K z ( ~  O)QzO/rt(k)) (13) 

to obtain 

vS(k) = Cz(nm/k2)[81 (k)/W)~q-’(k) .(14) 

where t;’(k) = 6:(k) and CZ = 1,” Qz(x) dx. The SL(k) are related to the sum rules of 
the Jt(k, t) up to 2nth order. In view of our earlier work 1121 on the transport coefficients 
we derive equations (7) and (14) by going up to the stage of the memory functiuon so as 
to incorporate the sum rules of the stress tensors up to fourth order in the k + 0 limit. 
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3. Results and discussion 

In order to calculate q ( k )  and qs(k) from expressions (7) and (14) we require the knowledge 
of the sum rules up to sixth order of 4 ( k ,  t )  and of &(k. t ) .  The results for these have 
been taken from the work by Bansal and Pathak. These sum rules involve the pair potential 
and static pair, triplet and quadruplet correlation functions. For the triplet and quadruplet 
correlation functions a low-order decoupling approximation has been used. Regarding the 
validity of the superposition approximation, it has been demonstrated by Bansal and Bruns 
[13] that the errors involved in the calculation of the sum rules due to the superposition 
approximation are not of much significance for any k value in contrast to what is generally 
expected. This conclusion was drawn by performing a computer simulation experiment 
for the evaluation of the triplet contribution to the fourth sum rule of the longitudinal 
and transverse current correlation functions at the hiple point of argon and comparing the 
results with those obtained using the superposition approximation. The same conclusion 
also emerges from the work of Pathak et al [14], who performed similar calculations at 
different densities and temperatures for U fluids. Therefore, in the present work we restrict 
ourselves to the use of the superposition approximation and expect that the results obtained 
are independent of the approximation used here to estimate the multiparticle contribution to 
the sum rule. 

The only unknowns in the expressions (7) and (14) for the evaluation of wave vector 
dependent viscosities are now C1 and Cz. C1 and Cz are numeric constants; e.g., 
C1 = CZ = (a/Z)'P for the Gaussian form of the relaxation kemels. In the present 
work we calculate C1 and Cz so as to achieve the exact value of VI(= 4.44 mpoise) and 
qs(= 2.5 mpoise) at k = 0 near the triple point of the LI fluids so that the hydrodynamic 
results (k + 0) are exactly reproduced by the theory. The results obtained for the three 
normalized (q(k)/q(O)) viscosities obtained for the w fluid are plotted in figure 1 against 
k.  From the figure it is seen that qs(k) and ql(k) decay with k. The decay of ql(k) with k 
is faster than the decay of q&), which results in a negative value of the bulk viscosity for 
k t 0.8 A-'. From figure 1 it is also observed that qs(k) decays smoothly whereas there is 
some structure present in the decay of ql(k). 

In order to search for the reason for the negative bulk viscosity we have plotted in 
figure2theinitialvalues ofthe functions ql(k, t = O)(= S $ ) / k 2 ) ,  q&, t = O)(= S:(k)/kz) 
and qB(k, t = O)(= q ( k ,  i = 0);4q&, t = 0)/3). From figure 2 it is seen that q ~ ( k .  t = 0) 
becomes negative for k > 1.4 A-' and it is found to oscillate. From figures 1 and 2 one 
may conclude that the effect of relaxations &(k, w = 0 )  and &, o = 0) is to further 
speed up the decay of q1(k) and/or to slow down the decay of qs(k) with k so as to make 
qB(k) negative at a value of k smaller than that at which qB(k, t = 0) is negative. In order 
to obtain physical insight we note that qs(k, t = 0) and ql(k, t = 0) are related to G ( k )  and 
$G(k)  + B(k):  G(k)  and B(k) are the wave vector dependent rigidity modulus and bulk 
modulus. Therefore, figure 2 implies that it is the bulk modulus that becomes negative for 
k > 1.4 A-'. This information may be useful in problems related to the elastic instability 
of the system under external disturbances in which elastic moduli vanish. Our study suggest 
that in such a system the bulk modulus should vanish faster than the rigid modulus. 

The negative value of the bulk viscosity observed in the present theoretical calculations 
is supported by the findings in a lattice gas model of Das et al [2], who extended the 
Boltmann equation to be valid in the hydrodynamic regime. It has been shown by Das 
et al that negative bulk viscosity arises due to the non-isotropy of the system at finite k. 
In fact the isotropy of the lattice gas is an idealization and a limiting property valid only 
for very small values of k. At finite k lattice gases are no longer isotropic and hence the 
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Figure 1. The variation of the ulree normalized viscosities with Wave number k. 
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Figure 2. The variation of n(k, t = 0) (full line), qJk. f = 0) (dashed line) and qB(k. f = 0) 
(dolted line) with wave number k.  

transport coefficients are direction dependent. With decreasing density the isotropy breaks 
down at smaller and smaller k values. In fact it has been shown by Das er al that the bulk 
viscosity is negative only for some particular direction of the wave vector k. However, from 
the present work it is not clear that such a breakdown of isotropy at finite k takes place in  
our system, which is considered to be an isotropic system. Further, it is not possible either 
from the nature of the work done here to comment on the physical effects that make the 
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generalized bulk viscosity negative. Therefore, this remains to be investigated. 

4. Conclusion 

To conclude, in this paper we have used the concept of generalized hydrodynamics to show 
theoretically the existence of negative bulk viscosity in LI fluids. From the present work and 
the findings of Larsson et al [7] for liquid Pb and of Das et a1 [Z] for the lattice gas system 
one expects that the negative bulk viscosity may be a universal phenomenon in liquids and 
dense fluids. However, this needs more investigation. 
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